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Problem 1:

(i)

First of all, H as defined is nonempty because e3 = e always. Now suppose that a, b ∈ H are arbitrary
elements. Because G is Abelian, we find that

(ab−1)3 = ab−1ab−1ab−1 = a3b−3 = e(b3)−1 = ee−1 = e =⇒ ab−1 ∈ H.

Therefore, H ≤ G.

(ii)

Consider the group GL2(C), which is non-Abelian. In it, we find a pair of nonidentity elements of order 3,
thereby making them elements of H.[

e
2πi
3 0

0 e
4πi
3

]3
=

[
1 0
0 1

]
=

[
−1 −1

1 0

]3
If H were a subgroup, it would be closed under multiplication of its elements, so we will compute the product
of these elements as follows: [

e
2πi
3 0

0 e
4πi
3

]
·
[
−1 −1

1 0

]
=

[
e

−πi
3 e

−πi
3

e
−2πi

3 0

]
.

And now for the moment of truth, shall we find that this product belongs to H? That is to say, will its cube
be the identity matrix? Taking the cube of the product, we find that[

e
−πi
3 e

−πi
3

e
−2πi

3 0

]3
=

[
−2 +

√
3i −3

2 +
√
3
2 i√

3i −1
2 +

√
3
2 i

]
6=
[
1 0
0 1

]
,

which shows us that the product does not belong to H. Therefore, H � GL2(C).

Problem 2:

(i)

With H,K ≤ G subgroups, we find that H ∩ K 6= ∅ because both contain the identity. Suppose that
a, b ∈ H ∩ K are arbitrary elements. What this buys us is that the product ab−1 ∈ H because H is a
subgroup containing both a and b. Similarly, ab−1 ∈ K =⇒ ab−1 ∈ H ∩K. Therefore, H ∩K ≤ G.
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(ii)

Let G = Z, H = 2Z, and K = 3Z. The union H ∪K consists of all multiples of 2 and 3. Then 2, 3 ∈ H ∪K,

yet 2 + 3 = 5 /∈ H ∪K because 5 is neither a multiple of 2 nor 3. Therefore, H ∪K � G. There are cases

where it is true, but it is not true in general.

(iii)

Let S be an arbitrary collection of subgroups within G. Then the intersection of this collection is nonempty
because e belongs to every subgroup and thereby belongs to the intersection as well. As in part (i), let

a, b ∈
⋂
H∈S

H ⇐⇒ ∀H ∈ S, a ∈ H and b ∈ H

be arbitrary elements. Similarly to part (i), we find that

∀H ∈ S, ab−1 ∈ H ⇐⇒ ab−1 ∈
⋂
H∈S

H ⇐⇒
⋂
H∈S

H ≤ G,

where the first correspondence follows from all the H’s being subgroups.

Problem 3:

(i)

Suppose that o(a) = n =⇒ an = e. Because an is the n-fold product of a with itself, and because f is a ho-
momorphism, f(an) can be expanded to the n-fold product of f(a), notated as f(a)n. That homomorphisms
preserve the identity is a well-known fact, so f(a)n = f(an) = f(e) = e. As proven in class, the order of an
element in a group always divides all powers which annihilate that element, so

o(f(a))|n =⇒ o(f(a)) ≤ n.

(ii)

There is an isomorphism between Cn and Zn given by a 7→ 1, so we will use the notation Zn to mean the
cyclic group of order n. It is obvious that Z1 is the trivial group; for any group G, there exists a unique
homomorphism eG : {e} → G (i.e. the trivial group is the initial object in the category of groups) given by
e 7→ e. Since Z is a group, there does exist a homomorphism Z1 → Z.

Now assume that the index n ≥ 2. By part (i), any homomorphism Zn → Z would need to send each
element of Zn to an element of finite order since Zn is a finite group. However, the only element of finite
order in Z is 0, so the only homomorphism Zn → Z is the trivial map k 7→ 0 for any 0 ≤ k ≤ n− 1.

Problem 4:

(i)

Let a, b ∈ G be arbitrary elements of an Abelian group. The coset product is defined as

(aH)(bH) := {xy | x ∈ aH, y ∈ bH}.

By the definitions of the left cosets aH and bH, any element of the coset product takes the form

ah1bh2 = abh1h2 for some h1, h2 ∈ H.

Because H is a subgroup, h1h2 ∈ H so that ah1bh2 ∈ (ab)H.
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Conversely, let abh ∈ (ab)H (h ∈ H) be an arbitrary element. Note that ab = aeb and that e ∈ H, so

abh = aebh ∈ (aH)(bH). Therefore, we have the set equality (aH)(bH) = (ab)H.

(ii)

Let a, b ∈ G be such that
aH = bH =⇒ H = a−1bH =⇒ a−1b ∈ H.

Because H is a subgroup, it is closed under the operation in G, leading us to observe that the right coset

Ha−1b = H =⇒ Ha−1 = Hb−1 ⇐⇒ f(aH) = f(bH).

Because equivalent left cosets map to equivalent right cosets, f is well-defined.
To be clear, writing H on both sides of an equation amounts to stating that there exist h1, h2 ∈ H which

may separately take the places of H on either side, e.g. aH = bH ⇐⇒ ah1 = bh2. This convention will be
followed in the subsequent parts.

(iii)

This time let a, b ∈ G be such that

f(aH) = f(bH) ⇐⇒ Ha−1 = Hb−1 =⇒ Ha−1b = H =⇒ a−1b ∈ H.

Similar to part (ii), we find that
a−1bH = H =⇒ bH = aH,

which asserts that f is injective as desired.

(iv)

Every right coset takes the form Ha for some a ∈ G. It is easy to find a left coset which maps to Ha; in
particular, f(a−1H) = H(a−1)−1 = Ha. Therefore, f is surjective and altogether bijective.

(v)

It is clear that g is well-defined because if h1 = h2 ∈ H, then ah1 = ah2. Surjectivity is also immediate
because every element of aH is of the form ah for some h ∈ H, meaning that g(h) = ah. Injectivity is the
only one which is not entirely immediate. Let h1, h2 ∈ H be such that

g(h1) = g(h2) ⇐⇒ ah1 = ah2 =⇒ h1 = h2,

where the equality follows from the cancellation property. Therefore, g is a bijective function.

Problem 5:

All subgroups of cyclic groups are again cyclic (stated in class), which can be shown by making use of the
division algorithm. With this, the subgroups in the diagram will be completely determined up to isomorphism
by their orders.

Arrows in the diagram indicate multiplication maps which surject onto the subgroups in the codomain
position. And because these are functions, they may be composed; in other words, the arrows are transitive.
The portrayal of these subgroup diagrams with maps instead of just dashes gives an example of a commutative
diagram because all any paths from a domain to a codomain equal each other (the maps commute).
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(i)

Z24

Z12 Z8

Z6 Z4

Z3 Z2

·2
·3

·2
·3

·2

·2
·3

·2

(ii)

Z36

Z18 Z12

Z9 Z6 Z4

Z3 Z2

·2 ·3

·2
·3 ·2 ·3

·3 ·2 ·3
·2

Problem 6:

Because cyclic groups of the same order are isomorphic, a single representative of each isomorphism class
will be given along with some generators existing within Z6 × Z3. The largest order any element in Z6 × Z3

can achieve is 6 because the largest orders of elements in Z6 and Z3 are 6 and 3, respectively, and the order
of any element ([n]6, [m]3) is lcm(n,m).

• The trivial group Z1 is a subgroup of all groups, here generated by (0, 0).

• Z2 is generated by (3, 0).

• Z3 is generated by ([2]6, 0) and (0, [1]3).

• Z6 is generated by ([1]6, 0) and ([1]6, [1]3).

MATH 3175 4 Homework 2 Solutions


	
	
	

	
	
	
	

	
	
	

	
	
	
	
	
	

	
	
	

	

